3 research outputs found

    Sparsity and Incoherence in Compressive Sampling

    Get PDF
    We consider the problem of reconstructing a sparse signal x0Rnx^0\in\R^n from a limited number of linear measurements. Given mm randomly selected samples of Ux0U x^0, where UU is an orthonormal matrix, we show that 1\ell_1 minimization recovers x0x^0 exactly when the number of measurements exceeds mConstμ2(U)Slogn, m\geq \mathrm{Const}\cdot\mu^2(U)\cdot S\cdot\log n, where SS is the number of nonzero components in x0x^0, and μ\mu is the largest entry in UU properly normalized: μ(U)=nmaxk,jUk,j\mu(U) = \sqrt{n} \cdot \max_{k,j} |U_{k,j}|. The smaller μ\mu, the fewer samples needed. The result holds for ``most'' sparse signals x0x^0 supported on a fixed (but arbitrary) set TT. Given TT, if the sign of x0x^0 for each nonzero entry on TT and the observed values of Ux0Ux^0 are drawn at random, the signal is recovered with overwhelming probability. Moreover, there is a sense in which this is nearly optimal since any method succeeding with the same probability would require just about this many samples
    corecore